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Correlation and response in a driven dissipative model
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We consider a simple dissipative system with spatial structure in contact with a heat bath. The system always
exhibits correlations except in the cases of zero and maximal dissipation. We explicitly calculate the correlation
function and the nonlocal response function of the system and show that they have the same spatial
dependence.
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Driven dissipative systems occur in many different con-
texts, from collections of macroscopic particles to biological
systems. Such systems are intrinsically out of equilibrium,
and need the input of energy in order to remain functional.
One prototype driven dissipative system is a granular gas �1�,
a collection of inelastic grains that dissipate energy through
collisions; these have been examined extensively, experi-
mentally �2,3�, numerically �1,4–6�, and analytically �7�. Be-
cause of the difficulty in treating granular gases analytically,
stochastic mean-field models have been studied. One such is
the Maxwell model �8�, which assumes a velocity-
independent collision rate and no spatial structure; this facili-
tates analytical calculation �9� of quantities such as the ve-
locity distribution function and its moments.

The introduction of spatial dependence complicates and
enriches the behavior, and may lead to correlations. For ex-
ample, actual granular gases exhibit spatial clustering and
velocity correlations because of the dissipative collisions, as
is seen in simulational studies �10�. Williams and MacKin-
tosh �11� have shown numerically that correlations exist in a
one-dimensional �1D� driven dissipative gas provided the
restitution coefficient is different from 1, and Soto et al. �12�
have used the BBGKY hierarchy to study the appearance of
velocity correlations in inelastic hard-sphere systems. Bal-
dassarri et al. �13� and Ben-Naim and Krapivsky �14� con-
sider a lattice variant of the Maxwell model which they solve
in the freely cooling case �no driving�; the latter authors cal-
culate the spatially dependent velocity correlations which ex-
hibit Gaussian decay with distance.

In this Rapid Communication we study a model of a
driven system with spatial structure: the constituent “par-
ticles” are constrained to lie on a 1D lattice with nearest-
neighbor coupling. Our main goal will be to understand the
connection between the system’s dissipative nature and spa-
tial correlations. The system is coupled to a heat reservoir at
temperature T, and the model is chosen so that it has a well-
defined equilibrium limit for certain values of the system
parameters. The mean-field version of the model, which has
no spatial structure, can be solved exactly �15�, in the sense
that all the moments of the energy distribution may be cal-
culated. For the model of this Rapid Communication, we
calculate the two-point correlations of the system analyti-
cally, and demonstrate that nonzero correlations always exist
except for the cases �a� in which there is no dissipation �in
agreement with the results of Refs. �16,11�� or �b� when the
dissipation is maximal. For dissipative systems driven by

thermal contact with a heat bath, it is not only the bath tem-
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perature that determines the steady state of the system; the
nature of the coupling to the bath is relevant as well �in
contrast to nondissipative systems, for which this last plays
no role in the determination of the equilibrium state�. With
this in mind, we calculate the response of the system to a
change in one of these defining parameters, and compare the
spatial dependence of the nonlocal response function to that
of the correlation function.

The system we study is a generalization of a model intro-
duced in �15�, which can be regarded as the mean-field ver-
sion of the case treated in this Rapid Communication. We
consider N particles localized on sites n of a 1D lattice, each
characterized by its energy En. The entire chain is coupled to
an external Boltzmann-distributed bath at temperature T. The
particles interact, with interactions being either between sys-
tem particles or with the external bath. Specifically, a particle
is chosen randomly and its interaction follows the stochastic
rule

En�t + dt� =�
Value Probability

En�t� 1 − �dt

z��En�t� + En+1�t��
1

2
�1 − f��dt

z��En�t� + En−1�t��
1

2
�1 − f��dt

z�En�t� + EB� f�dt

�1�

Here � is the overall rate of interaction of a particle; it sets
the time scale and is irrelevant to the steady state. f , the
strength of the coupling to the bath, is a constant that deter-
mines the probability of a particle to interact with the bath,
�� �0,1� is a parameter characterizing the dissipation in an
interaction �in analogy to a restitution coefficient�, z is a
stochastic variable uniformly distributed between 0 and 1,
and EB is the energy of a particle chosen randomly from the
bath. In what follows, we shall only be interested in the
steady states of the system.

Our main results are that �i� correlations appear in this
system for all 0� f �1 provided ��1; when f =0,1 or
�=1 there are no correlations; �ii� the spatial decay of the
correlation function is calculated and found to be exponential
in the limit of N→�; �iii� the static nonlocal response func-
tion �to a localized change in f or T� is proportional to the
correlation function. This last point is reminiscent of the
fluctuation-dissipation theorem of equilibrium statistical me-
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chanics, but in our case there is no a priori reason to expect
the two functions to exhibit the same spatial dependence.

Using the dynamics presented in �1� we can write
equations describing the time evolution of the moments
of the energy distribution and the correlation functions
in the system. We will be interested in the steady-state
values of the moments, so we set the time derivatives to
zero. It is simple to show that the average energy is given by

En� Ē=Tf / �2− f −2��1− f��, with T being the bath tempera-
ture in units where the Boltzmann constant is unity. In order

to compute the correlation function C�n ,n+k��EnEn+k− Ē2,
we need to calculate the second moments; this leads to a set
of coupled equations:

E2 =
2�2�1 − f�EiEi+1 + 2TfĒ + 2fT2

3 − 2�2�1 − f� − f
, �2�

EnEn+1 =
6fTĒ + �1 − f����E2 + 3EnEn+2�

9 − 3f − ��1 − f��3 + ��
, �3�

EnEn+k =

1

2
��1 − f��EnEn+k+1 + EnEn+k−1� + fTĒ

2 − ��1 − f� − f
. �4�

In the last equation, k�2. We note that if f =0,1 or �=1,
then for all k�0, C�n ,n+k�=0: there are no correlations in
these cases. This is consistent with the two-dimensional
granular gas simulation of �16� where velocity correlations
disappear as the restitution coefficient goes to 1, and remi-
niscent of similar behavior of the density correlations �11�.
The case �=0 is unique in the sense that we obtain the
mean-field result for the distribution function and all corre-
lations disappear except C�n ,n+1�.

In what follows, we shall consider a system of N sites
with cyclic boundary conditions, that is, particle N+1 is
identified with particle 1. The results we present are valid in
the limit N→�. For general f and �, the coupled equations
�2�–�4� can be written as a matrix equation of the form

AW�=V�, where W� is a vector whose kth element is EnEn+k,

and V� is a vector of constants that depend on � , f , and T. The
N	N matrix A may be decomposed as A=T−B, where T is
a tridiagonal matrix with constant diagonals: the upper and

FIG. 1. The correlation length as a function of � for different
values of f .
lower diagonals are unity, while elements on the main diag-
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onal are 2�2−a�1− f�− f� /a�f −1�. B is an N	N matrix that
is zero everywhere but the upper left 3	3 block �which is
denoted by the 3	3 matrix G�. A tridagonal matrix having
the form T may be analytically inverted in closed form with
the help of �17�. A−1 may be computed from the relation �18�

A−1 = T−1 + T−1BQT−1 �5�

where Q is an N	N matrix of zeros except for the upper left
3	3 block which is the matrix �I−RG�−1, with R being the
upper left 3	3 block of T−1, and I being the 3	3 unit
matrix. In the limit N→� �19� this yields the result that the
correlations decay, for all k�1, as

C�n,n + k� = D��, f�e−k/
. �6�

The prefactor D�� , f� is a continuous function scaling the
strength of the correlations, and 
 is the correlation length,
given by 
−1=arccosh�(2−��1− f�− f) /��1− f��.

We note that the correlation length diverges as �→1 and
f →0, although we know that for �=1 there are no correla-
tions; this is because D�� , f�→0 for these values. This
means that around �=1 and f =0 the correlations are the
longest ranged but the weakest �20�. The behavior of the
correlation length as a function of f and � is shown in Fig. 1,
in which results from a Monte Carlo simulation of a 100-
particle model are presented for comparison.

Because of the correlations, the single-particle energy
distribution function P�E� is not amenable to analytic
calculation for general �. For �=1, detailed balance
holds, and an H theorem may be proved, and the system
comes to thermal equilibrium at the bath temperature
T. When �=0, the generating function g��� �defined by
g�����e−�E�=	0

�e−�EP�E�dE� is the same as that of the
mean-field model �15�: g���= ��T+1� 2F1�1,2 ,2− f ,−�T�
where 2F1 is a hypergeometric function.

For f =0 �and ��1� the system energy decays to zero
and therefore P�E�=��0� is the trivial steady state. In Fig. 2,
we plot the energy distribution function P�E� for different
values of �, as computed from a Monte Carlo simulation of
100 particles. We note that the distributions in Fig. 2 are
reminiscent of those found for the mean-field case �15�, that
is, the distribution functions are bounded by the cases of
�=0 and 1.

For a dissipative system coupled to a bath, both the cou-

FIG. 2. The distribution function on a logarithmic scale as found
from Monte Carlo simulation with f =0.5 and T=1.
pling strength f and the bath temperature T determine the
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steady-state behavior of the system. We will now consider
the response of the system to a local change in the coupling
to the bath. We stress that this is not a measurement that can
be performed on a system in equilibrium, for which f plays
no role in the steady state, and it is thus intrinsically a non-
equilibrium measurement. Nevertheless, we shall see that,
reminiscent of fluctuation-dissipation relations, the spatial re-
sponse to such a perturbation is proportional to the spatial
correlation function.

We imagine that each site in the system is coupled to a
Boltzmann-distributed bath at temperature T with a coupling
strength f . We seek to calculate the change of energy at site
n+k due to a small change in f �say, from f to f0� at location
n. Having changed the coupling at site n, the system no
longer has translational invariance, so instead of writing the
time-evolution equations for a single particle, we must con-
sider the dynamics of the entire chain. The structure of the

resulting equation �18� is again of the matrix form A�E�=V�,

where E� is a vector of the average energies 
Ēj�, and V� is a
vector of constants whose entries are all equal except Vn.
A�is a matrix that depends on � , f , and f0, which has a
form similar to that of A of Eq. �5�. It may thus be inverted

to yield Ēn+k, from which we obtain that for k�1, in the
N→� limit,

� dĒn+k

df0
�

f0=f
= B��, f�e−k/
 �7�

where B�� , f� is a continuous function, and where 
 has the
same value as in Eq. �6�. This describes the nonlocal re-
sponse of the system at a site a distance k from the point of
a local change in coupling to the bath. We note that this
intrinsically nonequilibrium response has the same spatial
decay as correlation function.

We may similarly ask what the response at a site n+k is to
a local change in bath temperature T at site n. Using methods
similar to the earlier calculations, we obtain for k�1, in the
limit N→� �18�,

dĒn+k

dTn
= G��, f�e−k/
 �8�

−1

FIG. 3. Dimensionless ratio of the correlation function �Eq. �6��
and the response to a small local perturbation in bath coupling f
�Eq. �7�� as a function of �, for different base values of f .
where G�� , f�= f / ���1− f�sinh�
 ��.
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In an equilibrium system, the spatiotemporal response of
an observable to a small change in its conjugate field is pro-
portional to the correlations of this variable, with the sys-
tem’s temperature being the constant of proportionality. Al-
though our response measurements do not take this form, it
is interesting to note that in both cases, the response of the

energy Ēn+k to a local change in the bath interaction at site n
is proportional to the correlation function Cn,n+k. Moreover,
for given bath temperature, the ratios of the correlation to the
response �for both types of response� decreases monotoni-
cally with increasing �.

In Figs. 3 and 4 we plot dimensionless ratios of the cor-
relation function �Eq. �6�� and the response to a local change
in bath coupling f �Eq. �7�� or temperature �Eq. �8��, respec-
tively. That is, we plot D�� , f� /TB�� , f� and
D�� , f� /T2G�� , f�, having scaled out the dimensions with the
appropriate factor of the base bath temperature. Although the
qualitative form of the curves are similar, we note that
D�� , f� /TB�� , f� is significantly less than 1, while
D�� , f� /T2G�� , f� has a significant plateau for small values
of f . We note that the perturbation in the local temperature is
related to the general problem of heat transport in a dissipa-
tive chain, which we will discuss separately �18�.

In this Rapid Communication, we have described exact
calculations for the spatial dependence of correlations and
response for a model driven dissipative system. It is intrigu-
ing that, despite the fact that the fluctuation-dissipation theo-
rem is not applicable to this system, the nonlocal response to
a change in temperature or bath coupling has the same spa-
tial dependence as the correlation function. Of course, it re-
mains to be seen what the nature of the temporal behavior of
these functions is, and it would be surprising if they were to
exhibit the same frequency dependence �21�.
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FIG. 4. Dimensionless ratio of the correlation function �Eq. �6��
and the response to a small local perturbation in bath temperature T
�Eq. �8�� as a function of �, for different values of f .
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